Phillip Stanley-Marbell
Foundations of Embedded Systems
Department of Engineering, University of Cambridge
http://physcomp.eng.cam.ac.uk
Topic 13: Physical Invariants, Principle of Stationary Action, Noether’s Theorem
(~45 minutes)
Version 0.2020
Pre-Recorded
Video
26
Intended Learning Outcomes for This Topic
2
Define the action and Lagrangian for a system
By the end of this topic, you should be able to:
Define generalized velocities for a system
Derive equations of motion for a system in terms of its generalized coordinates
Define generalized coordinates for a system
Apply the concept of generalized coordinates to measurands in embedded systems
26
Coordinate Systems
4
z
x
y
26
Generalized Coordinates
5
If we consider red boxs location and temperature, its generalized coordinates
would be latitude, longitude, elevation, and temperature:
Generalized coordinate space for the TI SensorTag:
{,a
x
,a
y
,a
z
,g
x
,g
y
,g
z
,m
x
,m
y
,m
z
,h,p,l,M,spl}
z
x
y
26
Definitions
6
Configuration
Set of sensors for the measurands of interest
Configuration space
Set of possible configurations
Dimension / degrees of freedom
Coordinate space
Set of possible measurand values
Generalized velocity
Rate of change of measurand coordinates
26
Example: Ball with Embedded Sensors
7
time
time
y-velocity height, h(t)
Measurements for a real instance:
The measurements are a path in the generalized
coordinate space with configuration
{x-accel., y-accel. z-accel.}
26
An Example
8
26
Example: Ball with Embedded Sensors
9
- - -
   
-
-



  (  )
 ()
- - -
   
-
-
-




  (  )
 ()
time
time
y-velocity height, h(t)
Recall: measurements are a path in the
generalized coordinate space
26
Feasible Paths in Generalized Coordinate Space
11
For any physical system, there will be certain paths that do not occur
time
height, h(t)
true h(t)
h
1
(t)
h
2
(t)
t
0
t
1
For the ball, looking at a single coordinate (height) as a function of time:
26
Feasible Paths Minimize the “Action”, S
12
S =
Z
r
[K(t) U (t)] dt
=
Z
t
2
t
1
[K(t) U (t)] dt.
Let K(t) be the generalized kinetic energy
and let U(t) be the generalized potential energy
For physically feasible paths, S is stationary
K(t) U(t) is called the Lagrangian
26
Extremal Values of the Functional S
13
time
height, h(t)
path, h(t), that
minimizes the
functional S
h
1
(t)
t
0
t
1
h
2
(t)
x
f(x)
x
min
x
min
x
x
min
+x
value of x that
minimizes the
function f(x)
S is a functional: A mapping from functions to real values
Extremals of functionals are the analogs of maxima and minima of functions
26
Feasible Paths Minimize the “Action”, S
14
26
Principle of Stationary Action
15
(Also known as principle of least action, but that’s a misnomer)
Maupertuis 1744, Euler 1744
The action, S, is a functional.
It has dimensions energy × time and is extremal at the Lagrangian 𝓛 = K(t) U(t)
S =
Z
t
2
t
1
L( t, r,
˙
r)dt
26
16
For mechanical systems, we already know
the form of the Lagrangian to be K(t) - U(t)
In what follows, we will work through the expression for
the action functional and we will see some interesting
physical laws which fall out of the algebra
26
How Deviations from True Path Aect S
17
n
(t)=h
n
(t) h
¯
(t).
time
height, h(t)
true h(t)
h
1
(t)
h
2
(t)
t
0
t
1
t*
ζ
1
(t*)
26
How Deviations from True Path Aect S
18
Kinetic energy
1
2
m
dh
¯
dt
!
2
Potential energy
mgh
¯
(t)
time
height, h(t)
true h(t)
h
1
(t)
h
2
(t)
t
0
t
1
ˆ
S =
Z
t
1
t
0
2
4
1
2
m
dh
¯
dt
+
d
dt
!
2
mg
h
¯
(t)+( t)
3
5
dt
=
Z
t
1
t
0
2
4
1
2
m
dh
¯
dt
!
2
+ m
dh
¯
dt
d
dt
!
+ m
d
dt
2
mg
h
¯
(t)+( t)
3
5
dt.
Action
26
Getting S in a Nicer Form
19
mg
h
¯
(t)+(t)
Taylor series expansion:
Potential energy
mgh
¯
(t)+mg
dh
¯
(t)
dh
+ mg
2
2
d
2
h
¯
(t)
dh
2
+ ...
<latexit sha1_base64="cidYrsS15MdT+/xS1efcjd7/fGs=">AAACfnicfVFNT9swGHayLyjb6LYjF28VExuiOBGM9obgsiOTVkBqSuU4TmvhOJH9ZlJn+Wfwx7jtt+yCE1qJTWOvZOnR86HXfpxWUhgg5FcQPnn67PmLtfXOxstXrze7b96em7LWjI9YKUt9mVLDpVB8BAIkv6w0p0Uq+UV6fdroFz+4NqJU32FR8UlBZ0rkglHw1LR7U+AZTmqVeQ8Hm6RUW+fs3O3AJ7yLW/UnB4qTXFNms0eszmZzt/K3zjZ1FTsbu1X2Kv5P2lt9PpFZCaYz7fZIPz4kw6MBJv1DEg0PYg8IGQy/EBx50EwPLeds2r1NspLVBVfAJDVmHJEKJpZqEExy10lqwyvKrumMjz1UtOBmYtv6HN72TIbzUvujALfsw4SlhTGLIvXOgsLc/K015L+0cQ35YGKFqmrgit0vymuJocTNX+BMaM5ALjygTAt/V8zm1HcFvqSmhNVL8ePgPO5HHn876B2fLOtYQ1voA9pBETpCx+grOkMjxNDv4H3wOdgNUfgx3Av3761hsMy8Q39MOLgDOBzCdw==</latexit>
<latexit sha1_base64="cidYrsS15MdT+/xS1efcjd7/fGs=">AAACfnicfVFNT9swGHayLyjb6LYjF28VExuiOBGM9obgsiOTVkBqSuU4TmvhOJH9ZlJn+Wfwx7jtt+yCE1qJTWOvZOnR86HXfpxWUhgg5FcQPnn67PmLtfXOxstXrze7b96em7LWjI9YKUt9mVLDpVB8BAIkv6w0p0Uq+UV6fdroFz+4NqJU32FR8UlBZ0rkglHw1LR7U+AZTmqVeQ8Hm6RUW+fs3O3AJ7yLW/UnB4qTXFNms0eszmZzt/K3zjZ1FTsbu1X2Kv5P2lt9PpFZCaYz7fZIPz4kw6MBJv1DEg0PYg8IGQy/EBx50EwPLeds2r1NspLVBVfAJDVmHJEKJpZqEExy10lqwyvKrumMjz1UtOBmYtv6HN72TIbzUvujALfsw4SlhTGLIvXOgsLc/K015L+0cQ35YGKFqmrgit0vymuJocTNX+BMaM5ALjygTAt/V8zm1HcFvqSmhNVL8ePgPO5HHn876B2fLOtYQ1voA9pBETpCx+grOkMjxNDv4H3wOdgNUfgx3Av3761hsMy8Q39MOLgDOBzCdw==</latexit>
<latexit sha1_base64="cidYrsS15MdT+/xS1efcjd7/fGs=">AAACfnicfVFNT9swGHayLyjb6LYjF28VExuiOBGM9obgsiOTVkBqSuU4TmvhOJH9ZlJn+Wfwx7jtt+yCE1qJTWOvZOnR86HXfpxWUhgg5FcQPnn67PmLtfXOxstXrze7b96em7LWjI9YKUt9mVLDpVB8BAIkv6w0p0Uq+UV6fdroFz+4NqJU32FR8UlBZ0rkglHw1LR7U+AZTmqVeQ8Hm6RUW+fs3O3AJ7yLW/UnB4qTXFNms0eszmZzt/K3zjZ1FTsbu1X2Kv5P2lt9PpFZCaYz7fZIPz4kw6MBJv1DEg0PYg8IGQy/EBx50EwPLeds2r1NspLVBVfAJDVmHJEKJpZqEExy10lqwyvKrumMjz1UtOBmYtv6HN72TIbzUvujALfsw4SlhTGLIvXOgsLc/K015L+0cQ35YGKFqmrgit0vymuJocTNX+BMaM5ALjygTAt/V8zm1HcFvqSmhNVL8ePgPO5HHn876B2fLOtYQ1voA9pBETpCx+grOkMjxNDv4H3wOdgNUfgx3Av3761hsMy8Q39MOLgDOBzCdw==</latexit>
<latexit sha1_base64="cidYrsS15MdT+/xS1efcjd7/fGs=">AAACfnicfVFNT9swGHayLyjb6LYjF28VExuiOBGM9obgsiOTVkBqSuU4TmvhOJH9ZlJn+Wfwx7jtt+yCE1qJTWOvZOnR86HXfpxWUhgg5FcQPnn67PmLtfXOxstXrze7b96em7LWjI9YKUt9mVLDpVB8BAIkv6w0p0Uq+UV6fdroFz+4NqJU32FR8UlBZ0rkglHw1LR7U+AZTmqVeQ8Hm6RUW+fs3O3AJ7yLW/UnB4qTXFNms0eszmZzt/K3zjZ1FTsbu1X2Kv5P2lt9PpFZCaYz7fZIPz4kw6MBJv1DEg0PYg8IGQy/EBx50EwPLeds2r1NspLVBVfAJDVmHJEKJpZqEExy10lqwyvKrumMjz1UtOBmYtv6HN72TIbzUvujALfsw4SlhTGLIvXOgsLc/K015L+0cQ35YGKFqmrgit0vymuJocTNX+BMaM5ALjygTAt/V8zm1HcFvqSmhNVL8ePgPO5HHn876B2fLOtYQ1voA9pBETpCx+grOkMjxNDv4H3wOdgNUfgx3Av3761hsMy8Q39MOLgDOBzCdw==</latexit>
26
Stationary Action Leads to Equations of Motion
20
Simplifying, we get
For to be zero regardless of
(t)
it must be that
S
S =
Z
h
1
h
0
"
m
d
2
h
¯
dt
2
d P.E.
dh
#
(t)dt.
<latexit sha1_base64="QVhJzvCM9MHRj+d0ezqNtV0kdWY=">AAACanicdVBdi9QwFE27fqyjq+MKiuzLxVFYHyxp2Y+ZB2FRBB9HdHYXJp0hTdNp2PSD5FYYSwX/om/+Al/8Eaa7I6johRsO55yb5J6k1soipd88f+va9Rs3t28Nbt/ZuXtveH/31FaNEXImKl2Z84RbqVUpZ6hQy/PaSF4kWp4lF697/eyjNFZV5Qdc1zIu+KpUmRIcHbUcfmGp1MjhPbwEpkpctvmSdgt3hh0wLTOcwwsogGWGizZdRKwpU3efxJYl3LRd1+auU1xEnTNubMAKjrkp2s/T4E3Q63kHAMyoVY4xsE8S+T4+hxQhWA5HNIgO6eR4DDQ4pOHkIHKA0vHkiELoQF8jsqnpcviVpZVoClmi0NzaeUhrjFtuUAktuwFrrKy5uOArOXew5IW0cXsZVQfPHJNCVhnXJcIl+/tEywtr10XinP0K9m+tJ/+lzRvMxnGryrpBWYqrh7JGA1bQ5w6pMlKgXjvAhVHuryBy7tJCl+bAhfBrU/g/OI2C0OF3B6OTV5s4tskeeUL2SUiOyQl5S6ZkRgT57u14D71H3g9/13/s711ZfW8z84D8Uf7Tn+2CuWo=</latexit>
<latexit sha1_base64="QVhJzvCM9MHRj+d0ezqNtV0kdWY=">AAACanicdVBdi9QwFE27fqyjq+MKiuzLxVFYHyxp2Y+ZB2FRBB9HdHYXJp0hTdNp2PSD5FYYSwX/om/+Al/8Eaa7I6johRsO55yb5J6k1soipd88f+va9Rs3t28Nbt/ZuXtveH/31FaNEXImKl2Z84RbqVUpZ6hQy/PaSF4kWp4lF697/eyjNFZV5Qdc1zIu+KpUmRIcHbUcfmGp1MjhPbwEpkpctvmSdgt3hh0wLTOcwwsogGWGizZdRKwpU3efxJYl3LRd1+auU1xEnTNubMAKjrkp2s/T4E3Q63kHAMyoVY4xsE8S+T4+hxQhWA5HNIgO6eR4DDQ4pOHkIHKA0vHkiELoQF8jsqnpcviVpZVoClmi0NzaeUhrjFtuUAktuwFrrKy5uOArOXew5IW0cXsZVQfPHJNCVhnXJcIl+/tEywtr10XinP0K9m+tJ/+lzRvMxnGryrpBWYqrh7JGA1bQ5w6pMlKgXjvAhVHuryBy7tJCl+bAhfBrU/g/OI2C0OF3B6OTV5s4tskeeUL2SUiOyQl5S6ZkRgT57u14D71H3g9/13/s711ZfW8z84D8Uf7Tn+2CuWo=</latexit>
<latexit sha1_base64="QVhJzvCM9MHRj+d0ezqNtV0kdWY=">AAACanicdVBdi9QwFE27fqyjq+MKiuzLxVFYHyxp2Y+ZB2FRBB9HdHYXJp0hTdNp2PSD5FYYSwX/om/+Al/8Eaa7I6johRsO55yb5J6k1soipd88f+va9Rs3t28Nbt/ZuXtveH/31FaNEXImKl2Z84RbqVUpZ6hQy/PaSF4kWp4lF697/eyjNFZV5Qdc1zIu+KpUmRIcHbUcfmGp1MjhPbwEpkpctvmSdgt3hh0wLTOcwwsogGWGizZdRKwpU3efxJYl3LRd1+auU1xEnTNubMAKjrkp2s/T4E3Q63kHAMyoVY4xsE8S+T4+hxQhWA5HNIgO6eR4DDQ4pOHkIHKA0vHkiELoQF8jsqnpcviVpZVoClmi0NzaeUhrjFtuUAktuwFrrKy5uOArOXew5IW0cXsZVQfPHJNCVhnXJcIl+/tEywtr10XinP0K9m+tJ/+lzRvMxnGryrpBWYqrh7JGA1bQ5w6pMlKgXjvAhVHuryBy7tJCl+bAhfBrU/g/OI2C0OF3B6OTV5s4tskeeUL2SUiOyQl5S6ZkRgT57u14D71H3g9/13/s711ZfW8z84D8Uf7Tn+2CuWo=</latexit>
<latexit sha1_base64="QVhJzvCM9MHRj+d0ezqNtV0kdWY=">AAACanicdVBdi9QwFE27fqyjq+MKiuzLxVFYHyxp2Y+ZB2FRBB9HdHYXJp0hTdNp2PSD5FYYSwX/om/+Al/8Eaa7I6johRsO55yb5J6k1soipd88f+va9Rs3t28Nbt/ZuXtveH/31FaNEXImKl2Z84RbqVUpZ6hQy/PaSF4kWp4lF697/eyjNFZV5Qdc1zIu+KpUmRIcHbUcfmGp1MjhPbwEpkpctvmSdgt3hh0wLTOcwwsogGWGizZdRKwpU3efxJYl3LRd1+auU1xEnTNubMAKjrkp2s/T4E3Q63kHAMyoVY4xsE8S+T4+hxQhWA5HNIgO6eR4DDQ4pOHkIHKA0vHkiELoQF8jsqnpcviVpZVoClmi0NzaeUhrjFtuUAktuwFrrKy5uOArOXew5IW0cXsZVQfPHJNCVhnXJcIl+/tEywtr10XinP0K9m+tJ/+lzRvMxnGryrpBWYqrh7JGA1bQ5w6pMlKgXjvAhVHuryBy7tJCl+bAhfBrU/g/OI2C0OF3B6OTV5s4tskeeUL2SUiOyQl5S6ZkRgT57u14D71H3g9/13/s711ZfW8z84D8Uf7Tn+2CuWo=</latexit>
m
d
2
h
¯
dt
2
=
d P.E.
dh
<latexit sha1_base64="XxqMe3rukYbh0oYYDVxOEeZEBc4=">AAACNHicdVBNaxRBEO2JH0nWr40evRQugheHniExu4dAUATBywpuEtjZLD09Pdkm3T1Dd01gaSb/KRd/iBcRPCji1d9gT7IBFS0oeLz3iqp6ea2kQ0o/R2s3bt66vb6x2btz9979B/2thweuaiwXE16pyh7lzAkljZigRCWOaiuYzpU4zE9fdfrhmbBOVuY9Lmsx0+zEyFJyhoGa999uPgcNWWkZ98VxmjWmCG6BPsuZ9W3rF6ELPE5b2INrH2Sa4cJqfz6OX8edYdEC9Ob9AY3THTraHQKNd2gy2k4DoHQ4ekEhCaCrAVnVeN7/mBUVb7QwyBVzbprQGmeeWZRcibaXNU7UjJ+yEzEN0DAt3MxfPt3C08AUUFY2tEG4ZH+f8Ew7t9R5cHbXur+1jvyXNm2wHM68NHWDwvCrRWWjACvoEoRCWsFRLQNg3MpwK/AFC8FgSK4L4fpT+D84SOMk4Hfbg/2Xqzg2yGPyhDwjCdkl++QNGZMJ4eSCfCJfybfoQ/Ql+h79uLKuRauZR+SPin7+AhWvqx0=</latexit>
<latexit sha1_base64="XxqMe3rukYbh0oYYDVxOEeZEBc4=">AAACNHicdVBNaxRBEO2JH0nWr40evRQugheHniExu4dAUATBywpuEtjZLD09Pdkm3T1Dd01gaSb/KRd/iBcRPCji1d9gT7IBFS0oeLz3iqp6ea2kQ0o/R2s3bt66vb6x2btz9979B/2thweuaiwXE16pyh7lzAkljZigRCWOaiuYzpU4zE9fdfrhmbBOVuY9Lmsx0+zEyFJyhoGa999uPgcNWWkZ98VxmjWmCG6BPsuZ9W3rF6ELPE5b2INrH2Sa4cJqfz6OX8edYdEC9Ob9AY3THTraHQKNd2gy2k4DoHQ4ekEhCaCrAVnVeN7/mBUVb7QwyBVzbprQGmeeWZRcibaXNU7UjJ+yEzEN0DAt3MxfPt3C08AUUFY2tEG4ZH+f8Ew7t9R5cHbXur+1jvyXNm2wHM68NHWDwvCrRWWjACvoEoRCWsFRLQNg3MpwK/AFC8FgSK4L4fpT+D84SOMk4Hfbg/2Xqzg2yGPyhDwjCdkl++QNGZMJ4eSCfCJfybfoQ/Ql+h79uLKuRauZR+SPin7+AhWvqx0=</latexit>
<latexit sha1_base64="XxqMe3rukYbh0oYYDVxOEeZEBc4=">AAACNHicdVBNaxRBEO2JH0nWr40evRQugheHniExu4dAUATBywpuEtjZLD09Pdkm3T1Dd01gaSb/KRd/iBcRPCji1d9gT7IBFS0oeLz3iqp6ea2kQ0o/R2s3bt66vb6x2btz9979B/2thweuaiwXE16pyh7lzAkljZigRCWOaiuYzpU4zE9fdfrhmbBOVuY9Lmsx0+zEyFJyhoGa999uPgcNWWkZ98VxmjWmCG6BPsuZ9W3rF6ELPE5b2INrH2Sa4cJqfz6OX8edYdEC9Ob9AY3THTraHQKNd2gy2k4DoHQ4ekEhCaCrAVnVeN7/mBUVb7QwyBVzbprQGmeeWZRcibaXNU7UjJ+yEzEN0DAt3MxfPt3C08AUUFY2tEG4ZH+f8Ew7t9R5cHbXur+1jvyXNm2wHM68NHWDwvCrRWWjACvoEoRCWsFRLQNg3MpwK/AFC8FgSK4L4fpT+D84SOMk4Hfbg/2Xqzg2yGPyhDwjCdkl++QNGZMJ4eSCfCJfybfoQ/Ql+h79uLKuRauZR+SPin7+AhWvqx0=</latexit>
<latexit sha1_base64="XxqMe3rukYbh0oYYDVxOEeZEBc4=">AAACNHicdVBNaxRBEO2JH0nWr40evRQugheHniExu4dAUATBywpuEtjZLD09Pdkm3T1Dd01gaSb/KRd/iBcRPCji1d9gT7IBFS0oeLz3iqp6ea2kQ0o/R2s3bt66vb6x2btz9979B/2thweuaiwXE16pyh7lzAkljZigRCWOaiuYzpU4zE9fdfrhmbBOVuY9Lmsx0+zEyFJyhoGa999uPgcNWWkZ98VxmjWmCG6BPsuZ9W3rF6ELPE5b2INrH2Sa4cJqfz6OX8edYdEC9Ob9AY3THTraHQKNd2gy2k4DoHQ4ekEhCaCrAVnVeN7/mBUVb7QwyBVzbprQGmeeWZRcibaXNU7UjJ+yEzEN0DAt3MxfPt3C08AUUFY2tEG4ZH+f8Ew7t9R5cHbXur+1jvyXNm2wHM68NHWDwvCrRWWjACvoEoRCWsFRLQNg3MpwK/AFC8FgSK4L4fpT+D84SOMk4Hfbg/2Xqzg2yGPyhDwjCdkl++QNGZMJ4eSCfCJfybfoQ/Ql+h79uLKuRauZR+SPin7+AhWvqx0=</latexit>
26
21
26
From Lagrangian to Motion in Generalized Coordinates
22
d
dt
0
@
@L(t, w, ˙w)
@ ˙w
i
w=r(t)
˙w=
˙
r(t)
1
A
=
@L(t, w, ˙w)
@w
i
w=r(t)
˙w=
˙
r(t)
The Euler-Lagrange equations let us get the equations of motion from Lagrangian
26
Noether’s Theorem
23
If under the transformation
t
0
= t +
N
X
i=1
"⌧
i
r
0
= r +
N
X
i=1
"⇣
i
the functional
=
Z
b
a
L(t, r,
˙
r)dt
is both invariant and extremal, then the value
C =
@L
@
˙
r
@L
@
˙
r
dr
dt
L(t, r,
˙
r)
remains constant (i.e., the quantity C is conserved)
t
0
= t +
N
X
i=1
"⌧
i
r
0
= r +
N
X
i=1
"⇣
i
and
26
Further Reading
24
▶︎ Complete these online self-assessments on https://f-of-e.org/
▶︎ Like learning to swim, you can’t learn all you need from a textbook
Best next step: Get some practice and test your understanding
https://f-of-e.org/chapter-13/#exercises
26
Things to Do
25
Complete a “muddiest point” two-question survey using this link