Phillip Stanley-Marbell
Foundations of Embedded Systems
Department of Engineering, University of Cambridge
http://physcomp.eng.cam.ac.uk
Topic 02: Precision, Accuracy, and Sensor Measurement Uncertainty
(~45 minutes)
Version 0.2020
(Video)
26
Intended Learning Outcomes for This Topic
2
Define the principal kinds of measurement uncertainty
By the end of this topic, you will be able to:
Define the essential components of a measurement
Demonstrate how uncertainty in sensor data aects embedded software
Define precision, accuracy, and reliability
Derive / propagate uncertainties through arithmetic operations on sensor data
26
Three Key Components of a Measurement
3
The measurement
instrument or sensor
The phenomenon being
measured: the measurand
The environment
(e.g., ambient vibrations, temperature, etc.)
The measurement is what
comes out of the
measurement instrument
Environment
Measurement
Instrument
26
Precision
4
Repeatability or fineness of control
More preciseLess precise
26
Accuracy
5
Dierence from correct value
Example: A sensor value can be measured with great precision (repeatability and
resolution), but the sensed value may differ from the actual value of the signal
More accurate
Less accurate
More precise
Less precise
26
Faults, Masking, Errors, Erasures
6
Hardware or software defect.
A fault that is not masked (and is hence visible)
Example: a signal shorted to ground when it should not be
When a value of a signal is the same as the value induced by
a fault, the fault is said to be masked
A fault whose value is different from any valid signal value
Fault or failure:
Masking:
Error:
Erasure:
26
Sources of Errors and Erasures
7
Microprocessor
LD @(R4), R2
ADD R5, R6
SHRL, R4, #8
Program:
λx.+2x
Temperature
Fluctuations
Circuit state disturbance inducement
26
Sources of Errors and Erasures: Soft Errors
8
Radioactive Decay of
238
U and
232
Th from
device packaging mold resin,
210
Po from
PbSn solder (and Al wire)
12
C
α-particles
γ- rays
Lithium
Cosmic rays Thermal neutrons
High energy neutron
(can penetrate up to 5
ft of concrete)
Neutron capture within Si
and B in integrated circuits
Unstable isotope
Magnesium
or
Possible interaction paths
Circuit state disturbance inducement
Microprocessor
+
+
Temperature
Fluctuations
}
LD @(R4), R2
ADD R5, R6
SHRL, R4, #8
Program:
λx.+2x
?
Electrical Noise
High-Energy Particles
26
Sources of Errors and Erasures: Noise
9
Thermal / Johnson-Nyquist
Noise
Possible interaction paths
Circuit state disturbance inducement
Microprocessor
Temperature
Fluctuations
LD @(R4), R2
ADD R5, R6
SHRL, R4, #8
Program:
λx.+2x
?
Shot Noise
“Flicker” / 1/f Noise
Random Telegraph Noise
26
Some Common Classifications of Errors
10
Random Errors
Systematic Errors
Epistemic Uncertainty
Aleatoric Uncertainty
Type A Uncertainty
Type B Uncertainty
Errors that vary over time (e.g., due to noise)
Errors that are fixed over time (e.g., an offset)
Uncertainty in a measurements due to insucient (or no) information
Uncertainty in a measurement due to random errors
Uncertainty quantified by (statistical) analysis of measurand
Uncertainty specified as properties of sensor, independent of measurand
▶︎
26
Measurement Distributions for an Actual Sensor (Bosch BMX055)
11
   


-  ()

Mean: 135.421, Stdev.: 2.4002, Significant Digits: 1
       





-  ()

- - - - -



-  ()

      





-  ()

       





 

1800 mV
1900 mV
2000 mV
2100 mV
2200 mV
2300 mV
2400 mV
2500 mV
Histogram of 100
readings of x-axis
acceleration data
from BMX055
operating at 2.5V
Accelerometer
Gyroscope
Magnetometer
Source: BMX055 datasheet
Source: BMX055 datasheet
26
x-component analysis
y-component analysis
z-component analysis
Pedometer / Step Counting System
Low-
Pass
Filter
Maximum-
Activity
Axis
Selection
Step
Count
Extremal
Value
Marking
Processor
Accelerometer
Eect of Noise in End-to-End Applications: Pedometer
12
(Source: ifitxit.com)
ARM Cortex M3 Microcontroller
Bluetooth Low-Energy IC
Accelerometer IC
(Source: Fitbit)
Pedometer algorithm: N. Zhao. “Full-Featured Pedometer Design Realized with 3-Axis Digital Accelerometer”. Analog Dialogue, 44(06), June 2010.
26
Maximal activity axis



 ()

([- ]  )
Example 1: Add Noise By Zeroing 5% of Samples
13


 ()

([- ]  )
Unperturbed accelerometer data
for one axis
Maximal activity axis
Data with induced errors for 5% of samples
0, 2.03, -2.72, -5.41, -3.72, 3.11, …
9.81, 15.51, 14.75, 8.28, 7.55, 8.08, …
-0.84, 0.04, -3.17, -3.72, 0.27, 0, …
x
y
z
1.54, 2.03, -2.72, -5.41, -3.72, 3.11, …
9.81, 15.51, 14.75, 8.28, 7.55, 8.08, …
-0.84, 0.04, -3.17, -3.72, 0.27, 0.8, …
x
y
z
Unperturbed accelerometer data
for all three axes
Data with induced errors for 5% of samples
3-axis accelerometer data from WISDM activity recognition dataset: J. R. Kwapisz, et al. “Activity recognition using cell phone accelerometers”. SIGKDD Explor. Newsl., 12(2):74– 82, Mar. 2011.
26
Maximal activity axis



 ()

([- ]  )




 ()

([- ]  )
Example 1: Add Noise By Zeroing 5% of Samples
14


 ()

([- ]  )




 ()

([- ]  )




 ()

([- ]  )
Unperturbed accelerometer data
for one axis
Reports 19 steps
Reports 19 steps!
Maximal activity axis
Low-pass filter
Extremal-value marking
Low-pass filter
Extremal-value marking
Data with induced errors for 5% of samples




 ()

([- ]  )
3-axis accelerometer data from WISDM activity recognition dataset: J. R. Kwapisz, G. M. Weiss, and S. A. Moore. “Activity recognition using cell phone accelerometers”. SIGKDD Explor. Newsl., 12(2):74– 82, Mar. 2011.
26
15
What else can we do
to estimate eect of noise/uncertainty,
other than just “run noise through programs” ?
26
Quantifying Effect of Noise: Propagating Uncertainties
1 of 5
16
y = f(x
1
,...,x
n
).
y = f(x
1
,...,x
n
),
First, we assume that if
then
26
Quantifying Effect of Noise: Propagating Uncertainties
2 of 5
17
f(x
1
,...,x
n
)=f(x
1
,...,x
n
)+
f(
x
1
,...,x
n
)
x
1
(x
1
x
1
)+...+
f(
x
The Taylor series expansion of
f(x)=f(a)+
f
0
(a)(x a)
1!
+
f
00
(a)(x a)
2
2!
+ ...
Next, take Taylor series expansion of about
Recall, that the Taylor series expansion of
f(x) about a point a is
= f(x
1
,...,x
n
).
f(x
1
,...,x
n
)
= f(x
1
,...,x
n
).
f(x
1
,...,x
n
),
about :
Note: see what happens to this term on next slide
26
Quantifying Effect of Noise: Propagating Uncertainties
3 of 5
18
Substituting into :
(y y)=
f(
x
1
,...,x
n
)
x
1
(x
1
x
1
)+...+
f(
x
1
,...,x
n
)
x
n
(x
n
x
n
)+....
σ
2
y
=lim
N→∞
2
4
1
N
N
X
j=1
(y
j
y)
2
3
5
From the assumption
y = f(x
1
,...,x
n
),
, we have
Now, from the definition of variance,
Simplifying:
σ
2
y
' lim
N→∞
1
N
N
X
j=1
n
X
i=1
f(
x
1
,...,x
n
)
x
i
(x
i
x
i
)
!
2
.
<latexit sha1_base64="LPIIx3wLU92a+H2RXhD+af6e7+c=">AAACq3icdVFdb9MwFHXC11a+CjzyYlEhtRKL4jLYeECa4IWnMQTdCnUXOa7Tmvkj2A4sivzr+AU88m9wmiI2BFeyfXTuubrH9+al4Nal6c8ovnL12vUbW9u9m7du37nbv3f/2OrKUDahWmgzzYllgis2cdwJNi0NIzIX7CQ/e93mT74yY7lWH1xdsrkkS8ULTokLVNb/vo0tX0qS1adjGKBkXyAWXGbNIcSGL1eOGKO/QcxV4WqPC0Nog3xz6LGtgurzS+RPg1Swwg07irdUozZaXBLjOBGwGGIdnLRGm/MM+SehaKGdDe8FXvmR/1NznnE/DBfcuSTiftR5GwXTSS/rD9Ikfb6LxgimybMU7Y/TDrzYewpRkq5jADZxlPV/4IWmlWTKUUGsnaG0dPOmbUoF8z1cWVYSekaWbBagIpLZebMetoePA7OAhTbhKAfX7MWKhkhra5kHpSRuZf/OteS/crPKFfvzhquyckzRrlFRCeg0bDcHF9ww6kQdAKGGB6+QrkiYsQv7DTP4/VH4f3A8TlDA73YHB68209gCD8EjMAQI7IED8AYcgQmg0Sh6G02jj/FO/D7+FONOGkebmgfgUsTsF4xY1K4=</latexit>
<latexit sha1_base64="LPIIx3wLU92a+H2RXhD+af6e7+c=">AAACq3icdVFdb9MwFHXC11a+CjzyYlEhtRKL4jLYeECa4IWnMQTdCnUXOa7Tmvkj2A4sivzr+AU88m9wmiI2BFeyfXTuubrH9+al4Nal6c8ovnL12vUbW9u9m7du37nbv3f/2OrKUDahWmgzzYllgis2cdwJNi0NIzIX7CQ/e93mT74yY7lWH1xdsrkkS8ULTokLVNb/vo0tX0qS1adjGKBkXyAWXGbNIcSGL1eOGKO/QcxV4WqPC0Nog3xz6LGtgurzS+RPg1Swwg07irdUozZaXBLjOBGwGGIdnLRGm/MM+SehaKGdDe8FXvmR/1NznnE/DBfcuSTiftR5GwXTSS/rD9Ikfb6LxgimybMU7Y/TDrzYewpRkq5jADZxlPV/4IWmlWTKUUGsnaG0dPOmbUoF8z1cWVYSekaWbBagIpLZebMetoePA7OAhTbhKAfX7MWKhkhra5kHpSRuZf/OteS/crPKFfvzhquyckzRrlFRCeg0bDcHF9ww6kQdAKGGB6+QrkiYsQv7DTP4/VH4f3A8TlDA73YHB68209gCD8EjMAQI7IED8AYcgQmg0Sh6G02jj/FO/D7+FONOGkebmgfgUsTsF4xY1K4=</latexit>
<latexit sha1_base64="LPIIx3wLU92a+H2RXhD+af6e7+c=">AAACq3icdVFdb9MwFHXC11a+CjzyYlEhtRKL4jLYeECa4IWnMQTdCnUXOa7Tmvkj2A4sivzr+AU88m9wmiI2BFeyfXTuubrH9+al4Nal6c8ovnL12vUbW9u9m7du37nbv3f/2OrKUDahWmgzzYllgis2cdwJNi0NIzIX7CQ/e93mT74yY7lWH1xdsrkkS8ULTokLVNb/vo0tX0qS1adjGKBkXyAWXGbNIcSGL1eOGKO/QcxV4WqPC0Nog3xz6LGtgurzS+RPg1Swwg07irdUozZaXBLjOBGwGGIdnLRGm/MM+SehaKGdDe8FXvmR/1NznnE/DBfcuSTiftR5GwXTSS/rD9Ikfb6LxgimybMU7Y/TDrzYewpRkq5jADZxlPV/4IWmlWTKUUGsnaG0dPOmbUoF8z1cWVYSekaWbBagIpLZebMetoePA7OAhTbhKAfX7MWKhkhra5kHpSRuZf/OteS/crPKFfvzhquyckzRrlFRCeg0bDcHF9ww6kQdAKGGB6+QrkiYsQv7DTP4/VH4f3A8TlDA73YHB68209gCD8EjMAQI7IED8AYcgQmg0Sh6G02jj/FO/D7+FONOGkebmgfgUsTsF4xY1K4=</latexit>
<latexit sha1_base64="LPIIx3wLU92a+H2RXhD+af6e7+c=">AAACq3icdVFdb9MwFHXC11a+CjzyYlEhtRKL4jLYeECa4IWnMQTdCnUXOa7Tmvkj2A4sivzr+AU88m9wmiI2BFeyfXTuubrH9+al4Nal6c8ovnL12vUbW9u9m7du37nbv3f/2OrKUDahWmgzzYllgis2cdwJNi0NIzIX7CQ/e93mT74yY7lWH1xdsrkkS8ULTokLVNb/vo0tX0qS1adjGKBkXyAWXGbNIcSGL1eOGKO/QcxV4WqPC0Nog3xz6LGtgurzS+RPg1Swwg07irdUozZaXBLjOBGwGGIdnLRGm/MM+SehaKGdDe8FXvmR/1NznnE/DBfcuSTiftR5GwXTSS/rD9Ikfb6LxgimybMU7Y/TDrzYewpRkq5jADZxlPV/4IWmlWTKUUGsnaG0dPOmbUoF8z1cWVYSekaWbBagIpLZebMetoePA7OAhTbhKAfX7MWKhkhra5kHpSRuZf/OteS/crPKFfvzhquyckzRrlFRCeg0bDcHF9ww6kQdAKGGB6+QrkiYsQv7DTP4/VH4f3A8TlDA73YHB68209gCD8EjMAQI7IED8AYcgQmg0Sh6G02jj/FO/D7+FONOGkebmgfgUsTsF4xY1K4=</latexit>
σ
2
y
'
f(
x
1
,...,x
n
)
x
1
2
σ
2
x
1
+
f(
x
1
,...,x
n
)
x
2
2
σ
2
x
2
+ ...+2σ
2
x
1
x
2
f(
x
1
,...,x
n
)
x
1
◆✓
f(
x
1
<latexit sha1_base64="Cn7mORBm37cU4c3tXmzTCCNDiTk=">AAADo3ictVJbb9MwFHYTLlu5dfDIi6Ga1GkocsJg422CB5B46dC6TWpC5LhOa82xg+0gqih/jH/BI/+Gk6ZoBY03dqQ4n79z+XyOTlZKYR0hP3uef+v2nbtb2/179x88fDTYeXxmdWUYnzAttbnIqOVSKD5xwkl+URpOi0zy8+zyXes//8qNFVqdumXJk4LOlcgFow6odKf3fTu2Yl7QdPk5wgAL/gXHkuduFOeGsjouqXGCSpyPYg2VWqH6Wxo2LyBspp2F/wavmr3mKqeNi42YL9xeV70VWmXDFWy/Pf6jWnStWtSp7a9LAIg2ntL5b6Llm2jsqougnw6GJCCvD8IoxCR4RcKjiHTgzeFLHAZkZUO0tnE6+BHPNKsKrhyT1NppSEqX1K0Kk7zpx5XlJWWXdM6nABUtuE3q1ZI1eBeYGc61gU85vGI3M2paWLssMogsqFvYv30teZ1vWrn8KKmFKivHFeuE8kpip3G7sXgmDGdOLgFQZgS8FbMFhaE62GuYwe9G8b/BWRSEgE8Ohsdv19PYQk/RczRCITpEx+gDGqMJYt4z77039k78Xf+j/8k/7UK93jrnCfrD/OQXY8ctHQ==</latexit>
<latexit sha1_base64="Cn7mORBm37cU4c3tXmzTCCNDiTk=">AAADo3ictVJbb9MwFHYTLlu5dfDIi6Ga1GkocsJg422CB5B46dC6TWpC5LhOa82xg+0gqih/jH/BI/+Gk6ZoBY03dqQ4n79z+XyOTlZKYR0hP3uef+v2nbtb2/179x88fDTYeXxmdWUYnzAttbnIqOVSKD5xwkl+URpOi0zy8+zyXes//8qNFVqdumXJk4LOlcgFow6odKf3fTu2Yl7QdPk5wgAL/gXHkuduFOeGsjouqXGCSpyPYg2VWqH6Wxo2LyBspp2F/wavmr3mKqeNi42YL9xeV70VWmXDFWy/Pf6jWnStWtSp7a9LAIg2ntL5b6Llm2jsqougnw6GJCCvD8IoxCR4RcKjiHTgzeFLHAZkZUO0tnE6+BHPNKsKrhyT1NppSEqX1K0Kk7zpx5XlJWWXdM6nABUtuE3q1ZI1eBeYGc61gU85vGI3M2paWLssMogsqFvYv30teZ1vWrn8KKmFKivHFeuE8kpip3G7sXgmDGdOLgFQZgS8FbMFhaE62GuYwe9G8b/BWRSEgE8Ohsdv19PYQk/RczRCITpEx+gDGqMJYt4z77039k78Xf+j/8k/7UK93jrnCfrD/OQXY8ctHQ==</latexit>
<latexit sha1_base64="Cn7mORBm37cU4c3tXmzTCCNDiTk=">AAADo3ictVJbb9MwFHYTLlu5dfDIi6Ga1GkocsJg422CB5B46dC6TWpC5LhOa82xg+0gqih/jH/BI/+Gk6ZoBY03dqQ4n79z+XyOTlZKYR0hP3uef+v2nbtb2/179x88fDTYeXxmdWUYnzAttbnIqOVSKD5xwkl+URpOi0zy8+zyXes//8qNFVqdumXJk4LOlcgFow6odKf3fTu2Yl7QdPk5wgAL/gXHkuduFOeGsjouqXGCSpyPYg2VWqH6Wxo2LyBspp2F/wavmr3mKqeNi42YL9xeV70VWmXDFWy/Pf6jWnStWtSp7a9LAIg2ntL5b6Llm2jsqougnw6GJCCvD8IoxCR4RcKjiHTgzeFLHAZkZUO0tnE6+BHPNKsKrhyT1NppSEqX1K0Kk7zpx5XlJWWXdM6nABUtuE3q1ZI1eBeYGc61gU85vGI3M2paWLssMogsqFvYv30teZ1vWrn8KKmFKivHFeuE8kpip3G7sXgmDGdOLgFQZgS8FbMFhaE62GuYwe9G8b/BWRSEgE8Ohsdv19PYQk/RczRCITpEx+gDGqMJYt4z77039k78Xf+j/8k/7UK93jrnCfrD/OQXY8ctHQ==</latexit>
<latexit sha1_base64="Cn7mORBm37cU4c3tXmzTCCNDiTk=">AAADo3ictVJbb9MwFHYTLlu5dfDIi6Ga1GkocsJg422CB5B46dC6TWpC5LhOa82xg+0gqih/jH/BI/+Gk6ZoBY03dqQ4n79z+XyOTlZKYR0hP3uef+v2nbtb2/179x88fDTYeXxmdWUYnzAttbnIqOVSKD5xwkl+URpOi0zy8+zyXes//8qNFVqdumXJk4LOlcgFow6odKf3fTu2Yl7QdPk5wgAL/gXHkuduFOeGsjouqXGCSpyPYg2VWqH6Wxo2LyBspp2F/wavmr3mKqeNi42YL9xeV70VWmXDFWy/Pf6jWnStWtSp7a9LAIg2ntL5b6Llm2jsqougnw6GJCCvD8IoxCR4RcKjiHTgzeFLHAZkZUO0tnE6+BHPNKsKrhyT1NppSEqX1K0Kk7zpx5XlJWWXdM6nABUtuE3q1ZI1eBeYGc61gU85vGI3M2paWLssMogsqFvYv30teZ1vWrn8KKmFKivHFeuE8kpip3G7sXgmDGdOLgFQZgS8FbMFhaE62GuYwe9G8b/BWRSEgE8Ohsdv19PYQk/RczRCITpEx+gDGqMJYt4z77039k78Xf+j/8k/7UK93jrnCfrD/OQXY8ctHQ==</latexit>
26
Quantifying Effect of Noise: Propagating Uncertainties
4 of 5
19
σ
2
y
'
y
x
1
2
σ
2
x
1
+
y
x
2
2
σ
2
x
2
+ ...+2σ
2
x
1
x
2
y
x
1
y
x
2
+ ....
So we have
When the parameters are uncorrelated:
f(x
1
,...,x
n
)
σ
2
y
'
n
X
i=1
f(x
1
,...,x
n
)
x
i
2
σ
2
x
i
.
<latexit sha1_base64="kuzvNPSQsCgPeVwC7+T2mGbdEis=">AAACcXicdVHLbhMxFPUMrza8AogFQgKrEVKqopGdtrQskCrYsCwSaSvF6cjjeBKrfkxtT9XImg/g87rsV7DgB/AkQRQEV7Lu8bn3+tjHRSWF8whdJ+mt23fu3ltb79x/8PDR4+6Tp0fO1JbxITPS2JOCOi6F5kMvvOQnleVUFZIfF2ef2vrxBbdOGP3Vzys+VnSqRSkY9ZHKu9/WiRNTRfP56QBGqPh5TLXKg/iAm9OgGyJ56fuktJQFUlHrBZWw7BMTj21Vw2WOm7eQyInxLuYbvG42m98zl7loiBXTmd9carWyoWXjNuvk3R7K0LsdPMAQZbsI7w/QErzf24Y4Q4vogVUc5t0rMjGsVlx7JqlzI4wqPw6tGpO86ZDa8YqyMzrlowg1VdyNw8KyBr6JzASWxsalPVywNycCVc7NVRE7FfUz93etJf9VG9W+3B8Hoavac82WQmUtoTew9R9OhOXMy3kElFkR7wrZjEZzffyl6MGvh8L/g6NBhiP+stM7+LhyYw28BBugDzDYAwfgMzgEQ8DA9+R58ip5nfxIX6Qw3Vi2pslq5hn4I9Ktn5g+vmU=</latexit>
<latexit sha1_base64="kuzvNPSQsCgPeVwC7+T2mGbdEis=">AAACcXicdVHLbhMxFPUMrza8AogFQgKrEVKqopGdtrQskCrYsCwSaSvF6cjjeBKrfkxtT9XImg/g87rsV7DgB/AkQRQEV7Lu8bn3+tjHRSWF8whdJ+mt23fu3ltb79x/8PDR4+6Tp0fO1JbxITPS2JOCOi6F5kMvvOQnleVUFZIfF2ef2vrxBbdOGP3Vzys+VnSqRSkY9ZHKu9/WiRNTRfP56QBGqPh5TLXKg/iAm9OgGyJ56fuktJQFUlHrBZWw7BMTj21Vw2WOm7eQyInxLuYbvG42m98zl7loiBXTmd9carWyoWXjNuvk3R7K0LsdPMAQZbsI7w/QErzf24Y4Q4vogVUc5t0rMjGsVlx7JqlzI4wqPw6tGpO86ZDa8YqyMzrlowg1VdyNw8KyBr6JzASWxsalPVywNycCVc7NVRE7FfUz93etJf9VG9W+3B8Hoavac82WQmUtoTew9R9OhOXMy3kElFkR7wrZjEZzffyl6MGvh8L/g6NBhiP+stM7+LhyYw28BBugDzDYAwfgMzgEQ8DA9+R58ip5nfxIX6Qw3Vi2pslq5hn4I9Ktn5g+vmU=</latexit>
<latexit sha1_base64="kuzvNPSQsCgPeVwC7+T2mGbdEis=">AAACcXicdVHLbhMxFPUMrza8AogFQgKrEVKqopGdtrQskCrYsCwSaSvF6cjjeBKrfkxtT9XImg/g87rsV7DgB/AkQRQEV7Lu8bn3+tjHRSWF8whdJ+mt23fu3ltb79x/8PDR4+6Tp0fO1JbxITPS2JOCOi6F5kMvvOQnleVUFZIfF2ef2vrxBbdOGP3Vzys+VnSqRSkY9ZHKu9/WiRNTRfP56QBGqPh5TLXKg/iAm9OgGyJ56fuktJQFUlHrBZWw7BMTj21Vw2WOm7eQyInxLuYbvG42m98zl7loiBXTmd9carWyoWXjNuvk3R7K0LsdPMAQZbsI7w/QErzf24Y4Q4vogVUc5t0rMjGsVlx7JqlzI4wqPw6tGpO86ZDa8YqyMzrlowg1VdyNw8KyBr6JzASWxsalPVywNycCVc7NVRE7FfUz93etJf9VG9W+3B8Hoavac82WQmUtoTew9R9OhOXMy3kElFkR7wrZjEZzffyl6MGvh8L/g6NBhiP+stM7+LhyYw28BBugDzDYAwfgMzgEQ8DA9+R58ip5nfxIX6Qw3Vi2pslq5hn4I9Ktn5g+vmU=</latexit>
<latexit sha1_base64="kuzvNPSQsCgPeVwC7+T2mGbdEis=">AAACcXicdVHLbhMxFPUMrza8AogFQgKrEVKqopGdtrQskCrYsCwSaSvF6cjjeBKrfkxtT9XImg/g87rsV7DgB/AkQRQEV7Lu8bn3+tjHRSWF8whdJ+mt23fu3ltb79x/8PDR4+6Tp0fO1JbxITPS2JOCOi6F5kMvvOQnleVUFZIfF2ef2vrxBbdOGP3Vzys+VnSqRSkY9ZHKu9/WiRNTRfP56QBGqPh5TLXKg/iAm9OgGyJ56fuktJQFUlHrBZWw7BMTj21Vw2WOm7eQyInxLuYbvG42m98zl7loiBXTmd9carWyoWXjNuvk3R7K0LsdPMAQZbsI7w/QErzf24Y4Q4vogVUc5t0rMjGsVlx7JqlzI4wqPw6tGpO86ZDa8YqyMzrlowg1VdyNw8KyBr6JzASWxsalPVywNycCVc7NVRE7FfUz93etJf9VG9W+3B8Hoavac82WQmUtoTew9R9OhOXMy3kElFkR7wrZjEZzffyl6MGvh8L/g6NBhiP+stM7+LhyYw28BBugDzDYAwfgMzgEQ8DA9+R58ip5nfxIX6Qw3Vi2pslq5hn4I9Ktn5g+vmU=</latexit>
26
Quantifying Effect of Noise: Propagating Uncertainties
5 of 5
20
If y = ax
1
+ bx
2
,then
σ
2
y
' a
2
σ
2
x
1
+ b
2
σ
2
x
2
+2abσ
2
x
1
x
2
.
If y = ax
1
x
2
,then
σ
2
y
y
2
'
σ
2
x
1
x
2
1
+
σ
2
x
2
x
2
2
+2
σ
2
x
1
x
2
x
1
x
2
.
Some special cases:
If y = a
bx
1
then
σ
y
y
' (b ln a)σ
x
1
26
x-component analysis
y-component analysis
z-component analysis
Pedometer / Step Counting System
Low-
Pass
Filter
Maximum-
Activity
Axis
Selection
Step
Count
Extremal
Value
Marking
Processor
Accelerometer
Eect of Noise in End-to-End Applications: Pedometer
21
(Source: ifitxit.com)
ARM Cortex M3 Microcontroller
Bluetooth Low-Energy IC
Accelerometer IC
(Source: Fitbit)
Pedometer algorithm: N. Zhao. “Full-Featured Pedometer Design Realized with 3-Axis Digital Accelerometer”. Analog Dialogue, 44(06), June 2010.
Recap
26
Maximal activity axis



 ()

([- ]  )
Example 1: Add Noise By Zeroing 5% of Samples
22


 ()

([- ]  )
Unperturbed accelerometer data
for one axis
Maximal activity axis
Data with induced errors for 5% of samples
0, 2.03, -2.72, -5.41, -3.72, 3.11, …
9.81, 15.51, 14.75, 8.28, 7.55, 8.08, …
-0.84, 0.04, -3.17, -3.72, 0.27, 0, …
x
y
z
1.54, 2.03, -2.72, -5.41, -3.72, 3.11, …
9.81, 15.51, 14.75, 8.28, 7.55, 8.08, …
-0.84, 0.04, -3.17, -3.72, 0.27, 0.8, …
x
y
z
Unperturbed accelerometer data
for all three axes
Data with induced errors for 5% of samples
3-axis accelerometer data from WISDM activity recognition dataset: J. R. Kwapisz, et al. “Activity recognition using cell phone accelerometers”. SIGKDD Explor. Newsl., 12(2):74– 82, Mar. 2011.
Recap
26
Quantifying Effect of Noise: Propagating Uncertainties
1 of 5
23
y = f(x
1
,...,x
n
).
y = f(x
1
,...,x
n
),
First, we assume that if
then
Recap
26
Quantifying Effect of Noise: Propagating Uncertainties
4 of 5
24
σ
2
y
'
y
x
1
2
σ
2
x
1
+
y
x
2
2
σ
2
x
2
+ ...+2σ
2
x
1
x
2
y
x
1
y
x
2
+ ....
So we have
When the parameters are uncorrelated:
f(x
1
,...,x
n
)
Recap
σ
2
y
'
n
X
i=1
f(x
1
,...,x
n
)
x
i
2
σ
2
x
i
.
<latexit sha1_base64="kuzvNPSQsCgPeVwC7+T2mGbdEis=">AAACcXicdVHLbhMxFPUMrza8AogFQgKrEVKqopGdtrQskCrYsCwSaSvF6cjjeBKrfkxtT9XImg/g87rsV7DgB/AkQRQEV7Lu8bn3+tjHRSWF8whdJ+mt23fu3ltb79x/8PDR4+6Tp0fO1JbxITPS2JOCOi6F5kMvvOQnleVUFZIfF2ef2vrxBbdOGP3Vzys+VnSqRSkY9ZHKu9/WiRNTRfP56QBGqPh5TLXKg/iAm9OgGyJ56fuktJQFUlHrBZWw7BMTj21Vw2WOm7eQyInxLuYbvG42m98zl7loiBXTmd9carWyoWXjNuvk3R7K0LsdPMAQZbsI7w/QErzf24Y4Q4vogVUc5t0rMjGsVlx7JqlzI4wqPw6tGpO86ZDa8YqyMzrlowg1VdyNw8KyBr6JzASWxsalPVywNycCVc7NVRE7FfUz93etJf9VG9W+3B8Hoavac82WQmUtoTew9R9OhOXMy3kElFkR7wrZjEZzffyl6MGvh8L/g6NBhiP+stM7+LhyYw28BBugDzDYAwfgMzgEQ8DA9+R58ip5nfxIX6Qw3Vi2pslq5hn4I9Ktn5g+vmU=</latexit>
<latexit sha1_base64="kuzvNPSQsCgPeVwC7+T2mGbdEis=">AAACcXicdVHLbhMxFPUMrza8AogFQgKrEVKqopGdtrQskCrYsCwSaSvF6cjjeBKrfkxtT9XImg/g87rsV7DgB/AkQRQEV7Lu8bn3+tjHRSWF8whdJ+mt23fu3ltb79x/8PDR4+6Tp0fO1JbxITPS2JOCOi6F5kMvvOQnleVUFZIfF2ef2vrxBbdOGP3Vzys+VnSqRSkY9ZHKu9/WiRNTRfP56QBGqPh5TLXKg/iAm9OgGyJ56fuktJQFUlHrBZWw7BMTj21Vw2WOm7eQyInxLuYbvG42m98zl7loiBXTmd9carWyoWXjNuvk3R7K0LsdPMAQZbsI7w/QErzf24Y4Q4vogVUc5t0rMjGsVlx7JqlzI4wqPw6tGpO86ZDa8YqyMzrlowg1VdyNw8KyBr6JzASWxsalPVywNycCVc7NVRE7FfUz93etJf9VG9W+3B8Hoavac82WQmUtoTew9R9OhOXMy3kElFkR7wrZjEZzffyl6MGvh8L/g6NBhiP+stM7+LhyYw28BBugDzDYAwfgMzgEQ8DA9+R58ip5nfxIX6Qw3Vi2pslq5hn4I9Ktn5g+vmU=</latexit>
<latexit sha1_base64="kuzvNPSQsCgPeVwC7+T2mGbdEis=">AAACcXicdVHLbhMxFPUMrza8AogFQgKrEVKqopGdtrQskCrYsCwSaSvF6cjjeBKrfkxtT9XImg/g87rsV7DgB/AkQRQEV7Lu8bn3+tjHRSWF8whdJ+mt23fu3ltb79x/8PDR4+6Tp0fO1JbxITPS2JOCOi6F5kMvvOQnleVUFZIfF2ef2vrxBbdOGP3Vzys+VnSqRSkY9ZHKu9/WiRNTRfP56QBGqPh5TLXKg/iAm9OgGyJ56fuktJQFUlHrBZWw7BMTj21Vw2WOm7eQyInxLuYbvG42m98zl7loiBXTmd9carWyoWXjNuvk3R7K0LsdPMAQZbsI7w/QErzf24Y4Q4vogVUc5t0rMjGsVlx7JqlzI4wqPw6tGpO86ZDa8YqyMzrlowg1VdyNw8KyBr6JzASWxsalPVywNycCVc7NVRE7FfUz93etJf9VG9W+3B8Hoavac82WQmUtoTew9R9OhOXMy3kElFkR7wrZjEZzffyl6MGvh8L/g6NBhiP+stM7+LhyYw28BBugDzDYAwfgMzgEQ8DA9+R58ip5nfxIX6Qw3Vi2pslq5hn4I9Ktn5g+vmU=</latexit>
<latexit sha1_base64="kuzvNPSQsCgPeVwC7+T2mGbdEis=">AAACcXicdVHLbhMxFPUMrza8AogFQgKrEVKqopGdtrQskCrYsCwSaSvF6cjjeBKrfkxtT9XImg/g87rsV7DgB/AkQRQEV7Lu8bn3+tjHRSWF8whdJ+mt23fu3ltb79x/8PDR4+6Tp0fO1JbxITPS2JOCOi6F5kMvvOQnleVUFZIfF2ef2vrxBbdOGP3Vzys+VnSqRSkY9ZHKu9/WiRNTRfP56QBGqPh5TLXKg/iAm9OgGyJ56fuktJQFUlHrBZWw7BMTj21Vw2WOm7eQyInxLuYbvG42m98zl7loiBXTmd9carWyoWXjNuvk3R7K0LsdPMAQZbsI7w/QErzf24Y4Q4vogVUc5t0rMjGsVlx7JqlzI4wqPw6tGpO86ZDa8YqyMzrlowg1VdyNw8KyBr6JzASWxsalPVywNycCVc7NVRE7FfUz93etJf9VG9W+3B8Hoavac82WQmUtoTew9R9OhOXMy3kElFkR7wrZjEZzffyl6MGvh8L/g6NBhiP+stM7+LhyYw28BBugDzDYAwfgMzgEQ8DA9+R58ip5nfxIX6Qw3Vi2pslq5hn4I9Ktn5g+vmU=</latexit>
26
Further Reading
25
Test your understanding:
▶︎ Complete these online self-assessments on https://f-of-e.org/
https://f-of-e.org/chapter-02/#exercises
Best next step
▶︎ Read the corresponding chapters of the handout (Chapter 2)
26
Things to Do
26
Complete a “muddiest point” 2-question survey using this link